








e | CBB’s main focus: evc

hallenges

KTN, April 15 —p. 4



Evolution occurs across time &

affects population, morpholog
genome, and molecules.

We focus on long-term evolutic
of molecular characteristics:

® Thousands of generations
* DNA sequences, genomic architecture

KTN, April 15 —p. 5



A better understanding of evol
Sure, but...

Our interest (and expertise) Is
algorithm development.

So our goals are:

* to develop models that are useful in bic
® to develop models amenable to compu

* to design and characterize algorithms
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Evolution provides a framewor
which to organize biological data
which to interpret them.

An evolutionary framework enables comj
approaches; in turn, these allow us to tre
accumulated about selected organisms t

® Necessary for a high-throughput approach.
® Crucial to medical research: we can learn f
organisms that are also easy to keep in a |
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R. conorii (Med. spotted fever) vs.

Ogata et al., Science 293(5537)
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Soanes et al.,
The Plant Cell
19:3318-3326 (2007)

Key

= Phytopathogen

= Animal pathogen

. Plastid containing taxon

B Lateral gene transfer events
B Phytopathogenic trait

Ustilago maydis
Cryptococcus neoformans
Phanerochaete chrysosporium
Coprinus cinereus

Schizosaccharomyces pombe

Saccharomycotina

Uncioncarpus reesii
Aspergillus nidulans
Aspergillus oryzae

Aspergillus terreus

Stagonospora nodorum
Magnaporthe grisea

Neurospora crassa

I yadrophobins
ToxA acquisition
and spread by LGT

Podospora anserina
Chaetomium globosum

Trichoderma reesei




ORDER
@ Galliformes
& Anseriformes
@ Passenformes
@ Charadnformes
@ Primates
& Columbidae
@ Artiodactyla
@ Accipitriformes
@ Ardeidac
@ Camivora
O Corvidae

& Ambiguous s

o
s

Avian flu
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Scale:
The data are accumulating very fast, than
throughput pipelines for sequencing whole
typing individuals, gathering gene express

Complexity:
Evolution is a very complex stochastic pro
simplest models give rise to hard compute

Integration:
Most biological data bear traces of evolutic
of evidence should help us improve our u
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 Modelling choices and c

her
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Very unusual characteristics for Comp

* No training set—we do not know the true
® Only one instance of the problem—until
systems elsewhere in the universe. ..

* Any optimization function is a surrogate

guantified.

and some complicating attributes:

® Time scales range from minutes to billion:
* Nearly all (molecular) data are about curr
* Parts of the data are irrelevant and some

missing—but we do not know which.
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Consider modelling rearrangements in a genom
allotment of genes among chromosomes and o
along each chromosome are altered.

We can model this type of evolution as follows:

* no assumed model (prediction only): use o
(e.g., one adjacency list of genes for each c
* Dbiological model (prediction and explanatio
documented operations (inversions, transpe
fusions, fissions, etc.); or
* mathematical model (prediction and charac
single mathematical operator that can prod
results and leads to good theory.
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These three choices are typ
any modelling activity.

Which one should a computer scie
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These three choices are typical of
any modelling activity.

Which one should a computer scientist c
All of them, in the order given!

® The first approach is simplest and can yield
(Nothing is ever model-free, however: in this
are all adjacencies of equal importance?)
® The second approach has explanatory powe
preferred by life scientists. It is usually too cc
may be solvable.

® The third approach comes with maturity—a ¢
mathematical model is the hardest to develo
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hallenges
e Some nice results
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e Sorting signed permutations b

O(nlog n) time.

® Reconstructing accurate phylo
whole-genome data.

e Refining inferred transcriptione
evolutionary models.

KTN, April 15 — p. 18



Given a signed permutation of the
find a shortest sequence of inversi
of the permutation and flip its orde
transform it into the identity permu
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Given a signed permutation of the
find a shortest sequence of inversi
of the permutation and flip its orde
transform it into the identity permu

12345
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Given a signed permutation of the
find a shortest sequence of inversi
of the permutation and flip its orde
transform it into the identity permu

12345
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Given a signed permutation of the
find a shortest sequence of inversi
of the permutation and flip its orde
transform it into the identity permu

12345
1254 -3
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A simplified version:
the (one-spatula) pancake-flip
Given a stack of pancakes of different
stack sorted by size with the largest p
using a sequence of “stack flips” (pref

This was the only research paper published |
(with Christos Papadimitriou, Discr. Math., 1€

Sorting by inversions is then sorting “burnt” g
spatulas, so that all burnt sides are down.

KTN, April 15 — p. 23



Problem posed in 1987 (Day & Sankoff, J.
Polytime alg. in 1995 (Hannenhalli & Pevz
runs in O(N°) time.
Subquadratic so\l)ation In 2004 (Tannier & ¢
runsin O(n  nlog n) time.

We gave an algorithm to sort almost all sic
by inversions in O(n log n) time (RECO

Main ideas: (i) lazy data structure; (ii) faster to rec
to avoid (or even recognize) them; (iii) work done
but before recovery starts, can be reused; (iv) err
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Given a collection of “genomes,” reconstr

evolutionary relationships in the form of a
(A genome is a partition of the “genes” into chro
chromosome is a signed permutation.)

Phylogenetic reconstruction was formalize
In 1950. DNA data created a huge deman
reconstructions, so there are many softwe

In contrast, reconstruction from rearrange
been limited to small collections of small ¢
(10—20 genomes of 100—-200 genes).
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We designed two different methods to rec
phylogenies from complex genomes (200
with very high accuracy (better than 95%)

One is based on a fast approximation algorithm tc
median problem for three genomes: given three ¢
(the median) that minimizes the sum of the distan
three. The decomposition is optimality-preserving
comes about when no decomposition can be fou

The other is based on a very accurate estimation
evolutionary distance between two genomes and
simple algorithm to construct the tree.
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to reconstruct
(20’000 genes)
95%).

fithm to solve the NP-hard
three genomes, find a fourth
2 distances to the given
Serving—the approximation
be found.

The other is based on a very accurate esti
evolutionary distance between two genom
simple algorithm to construct the tree.
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The edit (minimum) distance between t
underestimates the true distance.
Can we estimate the true distance fro

We have done this for several operations, mos
mathematical model (ISMB 2008) and for an e
gene duplication and deletion (APBC 2010).

Main idea: set up a state descriptor for a signe
undergoing rearrangements, using only a few
then write and solve the steady-state state-tra
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What confidence can we have in any C

Nonparametric bootstrapping is used in seq
reconstruction. New datasets are created by
iInput, a tree is built from each dataset, then &
However, this approach cannot be used with

We devised a parametric bootstrapping test.
For some €, apply € - N random rearrangeme
permutation, re-estimate true distances, subt
build a tree from the resulting distance matri
Repeat to obtain enough samples and do a f
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lution
hallenges

e One tough problem
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Modelling genomic evolution under rearrangements as well
as duplication and losses of “genes” (or genomic blocks).

The "blocks” must be homologous: they must be descended from the
same block in some last common ancestor. But duplication creates a
number of initially identical blocks, which then diverge slowly from each
other within the same organism.

Thus duplications, losses, and rearrangements are not independent.

Say genome A has 6 copies of block X and genome B has 4
copies—now which copy corresponds to which? It is not even
automatic that each of the 4 copies of block X in genome B has a
corresponding block among the 6 copies in genome A: there could
have been gains as well as losses of blocks in both A and B.



Things are In fact worse.

The DNA sequences of these blocks |
S0 seguence-based evolutionary anal

Evolution at the level of nucleotides a
duplications, losses, and rearrangeme
combined into a single model.

Nothing of the kind exists at present.
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lution
hallenges

e Bringing it all back toge
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