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Nothing makes sense in biology

except in the light of evolution.

Theodosius Dobzhansky,

writing in “The American Biology Teacher,” 1973.
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Overview

• LCBB’s main focus: evolution

• Modelling choices and challenges

• Some nice results

• One tough problem

• Bringing it all back together
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What Kind of Evolution?

Evolution occurs across time and space and
affects population, morphology, metabolism,
genome, and molecules.

We focus on long-term evolution at the level
of molecular characteristics:

• Thousands of generations

• DNA sequences, genomic architecture, etc.
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What Are the Goals?

A better understanding of evolution?
Sure, but...

Our interest (and expertise) is model and
algorithm development.
So our goals are:

• to develop models that are useful in biological research;

• to develop models amenable to computational approaches; and

• to design and characterize algorithms for these models.
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Why ShouldWe Care?

Evolution provides a framework around
which to organize biological data and within
which to interpret them.

An evolutionary framework enables comparative
approaches; in turn, these allow us to transfer knowledge
accumulated about selected organisms to many others.

• Necessary for a high-throughput approach.

• Crucial to medical research: we can learn from short-lived

organisms that are also easy to keep in a lab (mice, yeast, etc.).
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Example: Co-Evolution

parasites: lice symbionts: gut bacteria

Si. chinensis

Me. mois

P. betae

M. kinseyi

C. viminalis

M. persicae

U. rurale

U. sonchi

D. noxia

A. pisum

R. maidis

R. padi

S. graminum

aphid species

other bacteria

E. coli

aphids

Buchnera species

association (~200MY)
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Example: Comparing Two Bacteria

R. conorii (Med. spotted fever) vs. R. prowazeckii (typhus)

Ogata et al., Science 293(5537):2093–2098 (2001)
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Example: Pathogenicity in Fungi

Soanes et al.,
The Plant Cell
19:3318–3326 (2007)
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Example: Dispersion of Organisms

Avian flu Katydids (Hawaii)
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Why DoWe Need Computation?

Scale:
The data are accumulating very fast, thanks to high-
throughput pipelines for sequencing whole genomes, geno-
typing individuals, gathering gene expression profiles, etc.

Complexity:
Evolution is a very complex stochastic process. Even the
simplest models give rise to hard computational problems.

Integration:
Most biological data bear traces of evolution. The totality
of evidence should help us improve our understanding.
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Overview

• LCBB’s main focus: evolution

• Modelling choices and challenges

• Some nice results

• One tough problem

• Bringing it all back together
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Computational Characteristics

Very unusual characteristics for Computer Science:

• No training set—we do not know the true history.
• Only one instance of the problem—until we discover new life

systems elsewhere in the universe. . .
• Any optimization function is a surrogate—the truth cannot be

quantified.

and some complicating attributes:

• Time scales range from minutes to billions of years.
• Nearly all (molecular) data are about current organisms.
• Parts of the data are irrelevant and some important parts are

missing—but we do not know which.
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Approaches toModelling

Consider modelling rearrangements in a genome—through which the
allotment of genes among chromosomes and orderings of these genes
along each chromosome are altered.

We can model this type of evolution as follows:

• no assumed model (prediction only): use only observed results
(e.g., one adjacency list of genes for each chromosome);

• biological model (prediction and explanation): use biologically
documented operations (inversions, transpositions, translocations,
fusions, fissions, etc.); or

• mathematical model (prediction and characterization): devise a
single mathematical operator that can produce all observed
results and leads to good theory.
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Which Approach toModelling?

These three choices are typical of
any modelling activity.

Which one should a computer scientist choose?
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Which Approach toModelling?

These three choices are typical of
any modelling activity.

Which one should a computer scientist choose?
All of them, in the order given!

• The first approach is simplest and can yield early results.
(Nothing is ever model-free, however: in this case, for instance,
are all adjacencies of equal importance?)

• The second approach has explanatory power and will be
preferred by life scientists. It is usually too complex, but parts of it
may be solvable.

• The third approach comes with maturity—a good, productive

mathematical model is the hardest to develop.
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Some Nice Results

• Sorting signed permutations by inversions in
O(n log n) time.

• Reconstructing accurate phylogenies from
whole-genome data.

• Refining inferred transcriptional networks using
evolutionary models.

KTN, April 15 – p. 18



Sorting by Inversions

Given a signed permutation of the set S = {1, 2, . . . , n},
find a shortest sequence of inversions (take a subsequence
of the permutation and flip its order and all its signs) to
transform it into the identity permutation.
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Sorting by Inversions

Given a signed permutation of the set S = {1, 2, . . . , n},
find a shortest sequence of inversions (take a subsequence
of the permutation and flip its order and all its signs) to
transform it into the identity permutation.

1 2 3 4 5 6 7 8
1 2 -5 -4 -3 6 7 8
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Bill Gates??

A simplified version:
the (one-spatula) pancake-flipping problem.
Given a stack of pancakes of different sizes, produce a
stack sorted by size with the largest pancake on the bottom,
using a sequence of “stack flips” (prefix reversals).

This was the only research paper published by Bill Gates
(with Christos Papadimitriou, Discr. Math., 1979).

Sorting by inversions is then sorting “burnt” pancakes using two
spatulas, so that all burnt sides are down.
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Sorting by Inversions

Problem posed in 1987 (Day & Sankoff, J. Theor. Bio.)
Polytime alg. in 1995 (Hannenhalli & Pevzner, STOC)

runs in O(n5) time.
Subquadratic solution in 2004 (Tannier & Sagot, CPM)

runs in O(n
√

n log n) time.

We gave an algorithm to sort almost all signed permutations
by inversions in O(n log n) time (RECOMB 2009).

Main ideas: (i) lazy data structure; (ii) faster to recover from errors than
to avoid (or even recognize) them; (iii) work done after the last error,
but before recovery starts, can be reused; (iv) errors are very rare.
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Phylogenies from Rearrangements

Given a collection of “genomes,” reconstruct their
evolutionary relationships in the form of an evolutionary tree.
(A genome is a partition of the “genes” into chromosomes; a
chromosome is a signed permutation.)

Phylogenetic reconstruction was formalized by Willi Hennig
in 1950. DNA data created a huge demand for such
reconstructions, so there are many software packages.

In contrast, reconstruction from rearrangement data has
been limited to small collections of small genomes
(10–20 genomes of 100–200 genes).
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Phylogenies from Rearrangements

We designed two different methods to reconstruct
phylogenies from complex genomes (20’000 genes)
with very high accuracy (better than 95%).

One is based on a fast approximation algorithm to solve the NP-hard
median problem for three genomes: given three genomes, find a fourth
(the median) that minimizes the sum of the distances to the given
three. The decomposition is optimality-preserving—the approximation
comes about when no decomposition can be found.

The other is based on a very accurate estimation of the true
evolutionary distance between two genomes and then uses a very
simple algorithm to construct the tree.
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True Rearrangement Distances

The edit (minimum) distance between two genomes
underestimates the true distance.
Can we estimate the true distance from the edit distance?

We have done this for several operations, most recently for the “good”
mathematical model (ISMB 2008) and for an extension that allows for
gene duplication and deletion (APBC 2010).

Main idea: set up a state descriptor for a signed permutation
undergoing rearrangements, using only a few variables,
then write and solve the steady-state state-transition equations.
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Assessment of Trees

What confidence can we have in any given edge of the tree?

Nonparametric bootstrapping is used in sequence-based
reconstruction. New datasets are created by resampling the
input, a tree is built from each dataset, then a frequency count is made.
However, this approach cannot be used with permutations.

We devised a parametric bootstrapping test.
For some ε, apply ε · n random rearrangements to each input
permutation, re-estimate true distances, subtract from them 2ε · n, and
build a tree from the resulting distance matrix.
Repeat to obtain enough samples and do a frequency count.
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One Tough Problem

Modelling genomic evolution under rearrangements as well
as duplication and losses of “genes” (or genomic blocks).

The ”blocks” must be homologous: they must be descended from the
same block in some last common ancestor. But duplication creates a
number of initially identical blocks, which then diverge slowly from each
other within the same organism.
Thus duplications, losses, and rearrangements are not independent.

Say genome A has 6 copies of block X and genome B has 4
copies—now which copy corresponds to which? It is not even
automatic that each of the 4 copies of block X in genome B has a
corresponding block among the 6 copies in genome A: there could
have been gains as well as losses of blocks in both A and B.
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One Tough Problem

Things are in fact worse.

The DNA sequences of these blocks is usually available,
so sequence-based evolutionary analyses can be run.

Evolution at the level of nucleotides and at the level of
duplications, losses, and rearrangements must be
combined into a single model.

Nothing of the kind exists at present.
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So why do we work on these problems?

• It is a fun mix of design, optimization, and testing.

• The models must connect at some level to biological reality.

• We constantly have to learn new things outside CS.

• Working between communities is a challenge.

• Biology moves so fast that we are never going to run out of work.

• Somebody needs to bring algorithms into this or else the data will
just get warehoused.

• There is nonzero probability of getting some insights into biology.
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