From Biology to Learning Algorithms and back:
Distributed Local Rules for Behavioral Learning

Wulfram Gerstner, EPFL, Lausanne
10,000 neurons
3 km wires

(10^{10} proc. elements/neurons)
10,000 links per neuron
Highly connected net

10 000 neurons
3 km wires

(10^{10} proc. elements/neurons)
10 ’000 links per neuron
Hodgkin-Huxley type models
Integrate-and-fire type models

- spikes are events
- threshold
- spike/reset/refractoriness

Spike emission

Spike reception
Background: What is brain-style computation?

Brain

Computer
Systems for computing and information processing

Brain

Computer

Distributed architecture

\(10^{10}\) proc. Elements/neurons

No separation of processing and memory

Von Neumann architecture

1 CPU

\(10^{10}\) transistors
Systems for computing and information processing

Brain

Tasks:
slow
Mathematical
\[\sqrt{5 \cos \left(\frac{7\pi}{5} \right)} \]

fast
Real world
E.g. complex scenes

Computer

slow

fast
How fast is neuronal signal processing?

animal -- no animal

Simon Thorpe
Nature, 1996

psychophysical experiment
30 images in 30 seconds

Visual processing

Memory/association

eye
Systems for computing and information processing

Brain

Where is the program?

Where is the memory?

Computer

Von Neumann architecture

Clear separation:
software (program)/hardware

Clear separation:
memory/processing

In the synaptic connections
Highly connected net
10,000 neurons
3 km wires

10^{10} proc. elements/neurons
10,000 links per neuron
... but these connections change strength all the time!

Connection = synapse
Change in connection = synaptic plasticity
Connections are directed
Models of synaptic Plasticity

Synapse

Synaptic changes = basis of learning
Computational Neuroscience

Learning

- behavior memory
- computational model
- Neurons
 - synapses
- molecules
- ion channels
From Biology to Learning Algorithms and back: *Distributed Local Rules for Behavioral Learning*

- Biology background: the brain
- What is learning? [behavioral learning]
- How could learning be? [neuronal level]
- An example of an algorithm
- The big questions
Unsupervised Learning

- Background tunes in the department store

- Different trees – you get better at seeing them, concepts are formed

- Learn your password for credit card?
Reward-based learning, conditioning

Reinforcement learning

Learn how to ride a bike
Supervised Learning

- Unsupervised learning
- Reinforcement learning
- Supervised learning

Learning = optimize Parameters using labeled data

Class L
From Biology to Learning Algorithms and back:

Distributed Local Rules for Behavioral Learning

- Biology background: the brain
- What is learning? [behavioral learning]
 - How could learning be? [neuronal level]
 - An example of an algorithm
- The big questions
Hebbian Learning

When an axon of cell j repeatedly or persistently takes part in firing cell i, then j’s efficiency as one of the cells firing i is increased

Hebb, 1949
Hebbian learning and LTP

Changes
- induced over 3 sec
- persist over hours and days
Hebbian Learning
Hebbian Learning

item memorized
Hebbian Learning

Recall:
Partial info

item recalled
Hebbian Learning: Functional Postulates

1) Useful for memory

Examples: Hopfield model, associative memory models

My problem: WHEN do we form new memories? Always?

Examples: Hopfield model, attractor networks – learning happens in a separate epoch, then connections fixed

Existing models of Hebbian learning and associative memory describe only induction of synaptic changes but not consolidation/maintenance
Hebbian Learning
= unsupervised learning

\[\Delta w_{ij} \propto F(\text{pre, post}) \]
3-factor learning rules:
= \text{global} \ast (\text{local Hebb})

\text{SUCCESS/Shock/Attention}

Functional Postulate (2)
Useful for learning the important stuff

\[\Delta w_{ij} \propto F(\text{pre, post, SUCCESS}) \]

My problem (2): Existing models of learning and memory do not take into account Neuromodulators/cannot describe success/shock/attention

Examples: learn to bike; car on highway trip; credit card number
Function (3): Synaptic changes for development

Initial: random connections

unselective neurons

Receptive field development: many plasticity models do this!
My problem (3): how about recurrent connections?

Correlated input

output neurons

Receptive field and cortical map formation: e.g. v.d. Malsburg; Kohonen; Bienenstock
Synaptic Plasticity: Functional Postulates

1) Useful for memory

2) Useful for learning the important stuff

3) Useful for developmental learning:
 Recept. fields AND recurrent connections

4) Useful for activity control:
 - avoid blow-up of synaptic weights,
 - avoid blow-up of network activity
From Biology to Learning Algorithms and back:
Distributed Local Rules for Behavioral Learning

✓ - Biology background: the brain
✓ - What is learning? [behavioral learning]
✓ - How could learning be? [neuronal level]
 - An example of an algorithm
 (from unsupervised to 3-factor)
✓ - The big questions
Hebbian Learning (rate models)

When an axon of cell \(j \) repeatedly or persistently takes part in firing cell \(i \), then \(j \)'s efficiency as one of the cells firing \(i \) is increased

- local rule
- simultaneously active (correlations)

Rate model:
active = high rate = many spikes per second

Hebb, 1949
Synaptic Plasticity (rate models)

\[\frac{dW_{ij}}{dt} = F(W_{ij}, v_j^{\text{pre}}, v_i^{\text{post}}) \]

- local rule
- simultaneously active

\[\frac{dW_{ij}}{dt} = a_0 + a_1^{\text{pre}} v_j^{\text{pre}} + a_1^{\text{post}} v_i^{\text{post}} + a_2^{\text{corr}} v_j^{\text{pre}} v_i^{\text{post}} \]

depend on \(W_{ij} \)

\[
\frac{dw_{ij}}{dt} = a_2^{corr} v_j^{pre} v_i^{post}
\]

\[
\frac{dw_{ij}}{dt} = a_2^{corr} v_j^{pre} v_i^{post} - c
\]

\[
\frac{dw_{ij}}{dt} = a_2^{corr} v_j^{pre} (v_i^{post} - \theta)
\]

all are Hebbian models

all are local models
Rate-based Hebbian Learning: BCM

\[
\frac{d}{dt} w_{ij} = a^\text{corr}_2 (v_i^{\text{post}} - \mathcal{G}) v_j^{\text{pre}}
\]

presynaptically gated

\[
\frac{d}{dt} w_{ij} = \Phi(v_i^{\text{post}} - \mathcal{G}) v_j^{\text{pre}}
\]

BCM

\[
\mathcal{G} = f(\overline{v}_i^{\text{post}})
\]

Rate-based plasticity models can be classified in framework

Control loop for network activity
Detour: Receptive field development
Detour: Receptive field development
Function (3): Synaptic changes for development

Initial: random connections

\[\text{unselective neurons} \]

Correlated input

\[\text{output neurons} \]

Receptive field and cortical map formation:

\[\text{output neurons specialize} \]
Receptive field development

Localized receptive fields

Plasticity yields ICA

Wavelets, computer vision
Lateral and forward connectivity
feedforward/lateral onto neuron 4

before

10 excitatory
4 inhibitory

after

Unsupervised learning/development of connectivity
from unsupervised to 3-factor rules
= global * local Hebb

\[\Delta w_{ij} \propto F(\text{pre, post, SUCCESS}) \]

Memorize at specific moments:
Protein synthesis depends on neuromodulators,
in particular dopamine \(\rightarrow\) success signal
TagTriC Model

Early LTP Protein synthesis consolidation

Induction model SUCCESS/attention/shock

Tag: synapse is preliminarily strengthened, decays spontaneously
hypothesis of the TagTriC Model

- long-term stability requires that synapse has 2 stable states
 → synaptic weight can be maintained over weeks

\[E \rightarrow Z \]
hypothesis of the TagTriC Model

- long-term stability requires that synapse has 2 stable states
 → synaptic weight can be maintained over weeks
hypothesis of the TagTriC Model

- How does it get from one well to the other?

For this to happen we need:
- LTP tag \(h=1 \)
- protein \(p>0.5 \)
from unsupervised to 3-factor rules
= global * local Hebb

\[\Delta w_{ij} \propto F(\text{pre}, \text{post}, \text{SUCCESS}) \]

local \hspace{1cm} global

Memorize at specific moments:
Protein synthesis depends on neuromodulators,
in particular dopamine \(\rightarrow\) learn now!!!!

Example: car on highway ; marriage ceremony
From Biology to Learning Algorithms and back: Distributed Local Rules for Behavioral Learning

✓ Biology background: the brain
✓ What is learning? [behavioral learning]
✓ How could learning be? [neuronal level]
✓ An example of an algorithm
✓ Another example of an algorithm

-The big questions
Reward-based learning, conditioning

Reinforcement learning

Learn how to ride a bike

h
Behavior: Navigation to a hidden goal (Morris water maze)

- Invisible platform in the water pool
- Distal visual cues

Morris 1981
Space representation: place cells

- Code for position of the animal

O’Keefe & Dostrovsky 1971
Space representation: place cells

- Code for position of the animal
- Learn action towards goal

O’Keefe & Dostrovsky 1971
Biological mechanisms: place cells

- Code for position of the animal

Cell recording

Activity map

Place cells

O’Keefe & Dostrovsky 1971
Reward-based Action Learning

Connection reinforced if action a at state s is successful.

$\Delta w_{aj} = \eta \cdot R_t \cdot e_{aj}$

Eligibility trace: $\frac{d}{dt} e_{aj}(t) = r(s_t) \cdot r_a(t) - g \cdot e_{aj}(t)$

State = activity $r(s)$

Action $a = \text{north}$
Theory

Rate model
\[
\frac{d}{dt} e_{aj}(t) = r(s_t) r_a(t) - g \cdot e_{aj}(t)
\]

Spiking model
\[
\frac{d}{dt} e_{aj}(t) = \epsilon(t - t_{j}^{pre})[\delta(t - t_{a}^{f}) - \rho(u(t))] - g \cdot e_{aj}(t)
\]

EPSP spike potential

\[
\frac{d}{dt} W_{aj} = \eta \ R_t \ e_{aj}
\]

Place cells
Neuronal model: Spike response model with stochastic threshold.

\[u_i(t \mid x, y^i_t) = u_{\text{rest}} + \sum_{j=1}^{N} w_{ij} \sum_{t_j^f \in x_j} \varepsilon(t - t_j^f) + \sum_{t_i^f \in y_t^i} \eta(t - t_i^f) \]

\[\rho_i(t \mid x, y^i_t) = \rho_0 \exp \left(\frac{u - \vartheta}{\Delta u} \right) = \rho(u(t)) \]
Theory

- Optimization of an objective function, i.e. Reward maximization.

\[
\langle R \rangle_{x,y} = \sum_{x,y} R(x, y) P(y|x) P(x)
\]

\[
\langle \Delta w \rangle_{x,y} = \alpha \left(R(x, y) \frac{\partial \log P(y|x)}{\partial w} \right)
\]

\[
\Delta w_{ij} = \alpha R(x, y) \int_0^T \frac{\rho_i'(s|x, y_s)}{\rho_i(s|x, y_s)} [Y(s) - \rho_i(s|x, y_s)] \sum_{t_i^f \in x_j} \epsilon(s - t_i^f) ds
\]

\[\text{reward} \quad \text{Hebb}\]

*Williams 1992
Xie and Seung, 20
Pfister et al. 2006
Florian 2007*
The learning rule

\[\frac{d}{dt} e_{aj}(t) = \varepsilon(t - t_{j}^{pre})[\delta(t - t_{a}^{f}) - \rho(u(t))] - g \cdot e_{aj}(t) \]

EPSP spike potential

\[\frac{d}{dt} W_{aj} = \eta R_{t} e_{aj} \]

very small decay
from unsupervised to 3-factor rules
= global * local Hebb

\[\Delta w_{ij} \propto F(\text{pre, post, SUCCESS}) \]

Memorize when you get a reward:
Transient changes mark the synapse (eligibility trace),
Neuromodulator dopamine \(\rightarrow\) success signal
Escape latency vs. trials

- Simple square room

Figure:

Escape latency = time to reach the platform from random starting point. Error bars represent 25% and 75% percentiles.
From Biology to Learning Algorithms and back:
Distributed Local Rules for Behavioral Learning

- Biology background: the brain
- What is learning? [behavioral learning]
- How could learning be? [neuronal level]
- An example of an algorithm
- Another example of an algorithm
- The big questions
from unsupervised to multi-factor rules
= global1 * gobal2 * (local Hebb)

\[\Delta w_{ij} \propto F(\text{pre, post, SUCCESS}) \]

- Memorize when you get a reward
- And/or when you are attentive
- And/or after a shock

- what are useful global signals?
- how much can networks learn
From Biology to Learning Algorithms and back:

Distributed Local Rules for Behavioral Learning

- Biology background: the brain
- What is learning? [behavioral learning]
- How could learning be? [neuronal level]
- An example of an algorithm
- Another example of an algorithm
- The big questions

AND THE REALLY BIG QUESTIONS

(consciousness, human/animal brain, abstraction, emergence ...)

model

Neurons

behavior

molecules

ion channels
Spike based learning rule

Thanks!
Function (3): Synaptic changes for development

Receptive field development: many plasticity models do this! My problem (3): how about recurrent connections?

Recurrent Connectivity reflects Coding:
- Temporal code yields asymmetric connections
 → barrel cortex data (Lefort et al. 2009; Yadhav, Wolfe, Feldman 2009)
- Rate code yields symmetric connections
 → visual cortex data (Song et al. 2005)
Behavior: Navigation to a hidden goal (Morris water maze)

- Different starting positions
- Task learning depends on the hippocampus

Foster, Morris & Dayan 2000